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Example 1.2-1 (Routes between Cities) Suppose that there are three different
routes from city A to city B and five different routes from city B to city C. The cities
and routes are depicted in the figure, with the routes numbered from 1 to 8. We wish
to count the number of different routes from A to C that pass through B. For
example, one such route is 1 followed by 4, which we can denote (1, 4). Similarly,
there are the routes (1, 5), (1, 6), ..., (3, 8). It is not difficult to see that the number of
different routes 3× 5 = 15.
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Theorem 1.2-1 (Multiplication Principle) Suppose that an experiment (or
procedure) E1 has n1 outcomes and, for each of these possible outcomes, an
experiment (procedure) E2 has n2 possible outcomes. Then the has n1n2 possible
outcomes.

More generally, suppose that an experiment has k parts (k ≥ 2), that the i-th part of
the experiment can have ni possible outcomes (i = 1, ..., k), and that all of the
outcomes in each part can occur regardless of which specific outcomes have occurred
in the other parts. Then the sample space S of the experiment will contain all vectors
of the form (u1, · · · , uk ), where ui is one of the ni possible outcomes of part
i(i = 1, ..., k). The total number of these vectors in S will be equal to the product
n1n2 · · · nk .
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Example 1.2-2 A boy found a bicycle lock for which the combination was
unknown. The correct combination is a four-digit number, d1d2d3d4, where
di , i = 1, 2, 3, 4, is selected from 1, 2, 3, 4, 5, 6, 7, and 8. How many different lock
combinations are possible with such a lock?
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Suppose that n positions are to be filled with n different objects. There are
n choices for filling the first position, n − 1 for the second, ..., and 1 choice
for the last position. So, by multiplication rule, there are

n(n − 1)(n − 2) · · · (2)(1) = n!

possible arrangements. The symbol n! is read ”n factorial.”

Definition 1.2-1 (Permutation) Each of the n! arrangements (in a raw) of n
different objects is called a permutation of the n objects.
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Example 1.2-3 Order 7 books on a shelf = 7! permutations.
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If only r positions are to be filled with objects selected from n different
objects, r ≤ n, then the number of possible ordered arrangements is

nPr = n(n − 1)(n − 2) · · · (n − r + 1) =
n!

(n − r)!

Definition 1.2-2 Each of the nPr arrangements is called a permutation of n objects
taken r at a time.

Remark 1.2-1 Sampling without replacement, one at a time, order is important!
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Example 1.2-4 (Choosing Officers) Suppose that a club consists of 25 members
and that a president and a secretary are to be chosen from the membership. We shall
determine the total possible number of ways in which these two positions can be
filled.

Since the positions can be filled by first choosing one of the 25 members to be
president and then choosing one of the remaining 24 members to be secretary, the
possible number of choices is 25P2 = (25)(24) = 600.
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Sampling with Replacement

Consider a box that contains n balls numbered 1, ..., n. First, one ball is
selected at random from the box and its number is noted. This ball is then
put back in the box and another ball is selected (it is possible that the same
ball will be selected again). As many balls as desired can be selected in this
way. This process is called sampling with replacement. It is assumed that
each of the n balls is equally likely to be selected at each stage and that all
selections are made independently of each other.

Suppose that a total of r selections are to be made, where r is a given
positive integer. Then the sample space S of this experiment will contain
all vectors of the form (x1, ..., xk ), where xi is the outcome of the ith
selection (i = 1, ..., k). Since there are n possible outcomes for each of the r
selections, the total number of vectors in S is nr . Furthermore, from our
assumptions it follows that S is a equally likely sample space. Hence, the
probability assigned to each vector in S is 1/nr .
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Example 1.2-5 (Birthday problem) In a group of k people, what is the
probability that at least 2 people will have the same birthday? Assume n = 365 and
that birthdays are equally distributed throughout the year, no twins, etc.

Solution.
1. Since there are 365 possible birthdays for each of k people, the sample space S

will contain 365k outcomes, all of which will be equally probable.

2. If k > 365, there are not enough birthdays for every one to be different, and
hence at least two people must have the same birthday. (Pigeonhole principle)

3. So, we assume below that k ≤ 365.

4. Denote

Ak = {at least 2 people have the same birthday in a group of k people}

and hence,

A′
k = {all k people have distinct birthdays}.
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Solution(continued).
5. Counting the number of outcomes in Ak is tedious. However, the number of

outcomes in S for which all k birthdays will be different, namely, the number of
outcomes in A′

k , is easy.

6. Indeed, N (A′
k ) =365 Pk , since the first person’s birthday could be any one of

the 365 days, the second person’s birthday could then be any of the other 364
days, and so on.

7. Hence,

P
(
A′

k
)
=

365Pk

365k ,

and therefore,

P(Ak ) = 1− P
(
A′

k
)
= 1− 365Pk

365k = 1− 365!

(365− k)! 365k .

�
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k 2 3 10 20 60

P(Ak )
1

365

1093

133225

2689423743942044098153

22996713557917153515625
– –

Approx. 0.002704 0.008204 0.1169 0.4114 0.9941
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Sampling without replacement

Sample a subset of size r from n different objects, if we aren’t concerned

with order, the number of subsets = nCr =

(
n
r

)
=

n!
r !(n − r)!

.

Definition 1.2-3 (Combinations) Each of the nCr unordered subsets is called a
combination of n objects taken r at a time, where

nCr =

(
n
r

)
=

n!
r !(n − r)!

.
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Example 1.2-6 A committee of 5 persons is to selected randomly from a group of 5
men and 10 women.
(a) Find the probability that the committee consists of 2 men and 3 women.
(b) Find the probability that the committee consists of all women.
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Theorem 1.2-2 (Binomial theorem) For n ≥ 0, it holds that

(x + y)n =

n∑
r=0
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Example 1.2-7 Prove
∑n

r=0(−1)r

(
n
r

)
= 0 and

∑n
r=0

(
n
r

)
= 2n.
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Split objects into m groups of various sizes:

Suppose that in a set of n objects, n1 are similar, n2 are similar, ..., nm are
similar, where n1 + n2 + · · ·+ nm = n. Then the number of distinguishable
permutations of the n objects is(

n
n1, n2, ..., nm

)
=

n!
n1!n2! · · · nm!

These numbers are called multinomial coefficient because of the following
multinomial expansion:

(x1 + x2 + · · ·+ xk )
n =

∑
k1+k2+···+km=n

(
n

k1, k2, · · · , km

)
xk1
1 xk2

2 · · · xkm
m .
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Example 1.2-8 20 members of a club need to be split into 3 committees (A, B, C)
of 8, 8, and 4 people, respectively. How many ways are there to split the club into
these committees?
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Example 1.2-9 Suppose that three runners from team A and three runners from
team B participate in a race. If all six runners have equal ability and there are no ties,
what is the probability that the three runners from team A will finish first, second,
and third, and the three runners from team B will finish fourth, fifth, and sixth?
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Exercises from textbook: Section 1.2: 1, 3, 4, 5, 7, 8, 9, 11, 16, 17.
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